Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Braz J Microbiol ; 54(3): 1935-1942, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37581711

RESUMO

A new Lysinibacillus fusiformis strain with abundant laccase activity was isolated from soil under forest rotted leaf and identified as L. fusiformis W11 based on its 16S rRNA gene sequence and physiological characteristics. The laccase LfuLac was purified and characterized. The optimum temperature and pH of LfuLac on guaiacol were 45 °C and pH 9, respectively. LfuLac kept 78%, 88%, 92%, 74%, and 47% of activity at pH 7-11, respectively, suggesting the alkali resistance of the enzyme. The effects of various metal ions on LfuLac showed that Cu2+, Mg2+, and Na+ were beneficial to laccase activity and 10 mM Cu2+ increased the activity of LfuLac to 216%. LfuLac showed about 90% activity at 5% organic solvents and more than 60% activity at 20%, indicating its resistance to organic solvents. In addition, LfuLac decolorized different kinds of dyes. This study enriched our knowledge about laccase from L. fusiformis W11 and its potential industrial applications.


Assuntos
Bacillaceae , Corantes , Lacase , Álcalis , Corantes/química , Concentração de Íons de Hidrogênio , Lacase/química , Lacase/genética , Lacase/isolamento & purificação , RNA Ribossômico 16S/genética , Solventes , Temperatura , Bacillaceae/enzimologia
2.
Sci Rep ; 12(1): 2416, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165332

RESUMO

The aim of this work to study an efficient laccase producing fungus Ganoderma leucocontextum, which was identified by ITS regions of DNA and phylogenetic tree was constructed. This study showed the laccase first-time from G. leucocontextum by using medium containing guaiacol. The growth cultural (pH, temperature, incubation days, rpm) and nutritional (carbon and nitrogen sources) conditions were optimized, which enhanced the enzyme production up to 4.5-folds. Laccase production increased 855 U/L at 40 °C. The pH 5.0 was suitable for laccase secretion (2517 U/L) on the 7th day of incubation at 100 rpm (698.3 U/L). Glucose and sucrose were good carbon source to enhance the laccase synthesis. The 10 g/L beef (4671 U/L) and yeast extract (5776 U/L) were the best nitrogen source for laccase secretion from G. leucocontextum. The laccase was purified from the 80% ammonium sulphate precipitations of protein identified by nucleotides sequence. The molecular weight (65.0 kDa) of purified laccase was identified through SDS and native PAGE entitled as Glacc110. The Glacc110 was characterized under different parameters. It retained > 90% of its activity for 16 min incubation at 60 °C in acidic medium (pH 4.0). This enzyme exerted its optimal activity at pH 3.0 and temperature 70 °C with guaiacol substrate. The catalytic parameters Km and Vmax was 1.658 (mM) and 2.452 (mM/min), respectively. The thermo stability of the laccase produced by submerged fermentation of G. leucocontextum has potential for industrial and biotechnology applications. The results remarked the G. leucocontextum is a good source for laccase production.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Ganoderma/enzimologia , Lacase/química , Lacase/metabolismo , Filogenia , Sequência de Bases , Precipitação Química , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Ganoderma/química , Ganoderma/classificação , Ganoderma/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Lacase/genética , Lacase/isolamento & purificação
3.
Int J Biol Macromol ; 192: 219-231, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624382

RESUMO

Trichoderma harzianum S7113 as an efficient fungal isolate for laccase production was identified using the 18S rRNA sequencing. T. harzianum S7113 attained its maximal laccase production level on the 14th day of static incubation at 28 °C and pH 5.0 using the inoculum size of 5 discs (14 mm), according to the one factor per time (OFT) method. The most appropriate carbon, organic and inorganic nitrogen sources to promote maximal laccase synthesis were glucose (15 g/L), beef extract (5 g/L), and ammonium chloride (4 g/L), respectively. Results of Response Surface Methodology (RSM) revealed that glucose, meat extract, and ammonium chloride concentrations of 17.54, 7.17, and 4.36 g/L respectively, at a pH value of 6.74 are the favorite conditions for high titer production. The ANOVA analysis highlighted an excellent match between the actual experimental results and the model predicted laccase production levels. The biodegradation of hydroquinone (HQ) by T. harzianum S7113 laccase was most efficient in the pH range of 5.0 to 6.5. The increase in laccase concentration led to a significant increase in the HQ conversion to get a biodegradation rate of 92 ± 2.6% with a laccase concentration of 0.75 U/mL after 3 h of reaction.


Assuntos
Fermentação , Hidroquinonas/metabolismo , Hypocreales/metabolismo , Lacase/biossíntese , Biodegradação Ambiental , Carbono/metabolismo , Meios de Cultura , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hypocreales/classificação , Hypocreales/genética , Hypocreales/isolamento & purificação , Lacase/isolamento & purificação , Engenharia Metabólica , Nitrogênio/metabolismo , Filogenia
4.
Appl Environ Microbiol ; 87(23): e0135521, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34524901

RESUMO

Lignin is a complex natural organic polymer and is one of the primary components of lignocellulose. The efficient utilization of lignocellulose is limited because it is difficult to degrade lignin. In this study, we screened a lacz1 gene fragment encoding laccase from the macrotranscriptome data of a microbial consortium WSC-6, which can efficiently degrade lignocellulose. The reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that the expression level of the lacz1 gene during the peak period of lignocellulose degradation by WSC-6 increased by 30.63 times compared to the initial degradation period. Phylogenetic tree analysis demonstrated that the complete lacz1 gene is derived from a Bacillus sp. and encoded laccase. The corresponding protein, LacZ1, was expressed and purified by Ni-chelating affinity chromatography. The optimum temperature was 75°C, the optimum pH was 4.5, and the highest enzyme activity reached 16.39 U/mg. We found that Cu2+ was an important cofactor needed for LacZ1 to have enzyme activity. The molecular weight distribution of lignin was determined by gel permeation chromatography (GPC), and changes in the lignin structure were determined by 1H nuclear magnetic resonance (1H NMR) spectra. The degradation products of lignin by LacZ1 were determined by gas chromatography and mass spectrometry (GC-MS), and three lignin degradation pathways (the gentian acid pathway, benzoic acid pathway, and protocatechuic acid pathway) were proposed. This study provides insight into the degradation of lignin and new insights into high-temperature bacterial laccase. IMPORTANCE Lignin is a natural aromatic polymer that is not easily degraded, hindering the efficient use of lignocellulose-rich biomass resources, such as straw. Biodegradation is a method of decomposing lignin that has recently received increasing attention. In this study, we screened a gene encoding laccase from the lignocellulose-degrading microbial consortium WSC-6, purified the corresponding protein LacZ1, characterized the enzymatic properties of laccase LacZ1, and speculated that the degradation pathway of LacZ1 degrades lignin. This study identified a new, high-temperature bacterial laccase that can degrade lignin, providing insight into lignin degradation by this laccase.


Assuntos
Bacillus/enzimologia , Lacase , Lignina , Bacillus/genética , Lacase/genética , Lacase/isolamento & purificação , Lignina/metabolismo , Filogenia
5.
Int J Biol Macromol ; 190: 574-584, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506861

RESUMO

Laccases are multi­copper oxidases that possess the potential for industrial wastewater treatments. In this study, a putative laccase from Sulfitobacter indolifex was recombinantly produced and characterised. The enzyme was found to be stable and active at low to ambient temperature and across a range of pH conditions. The ability of the putative bacterial laccase to catalyse the decolourisation of seven common industrial dyes was also examined. Our results showed that the putative laccase could efficiently decolourise Indigo Carmine, Coomassie Brilliant Blue R-250, Congo Red, Malachite Green and Alizarin in the presence of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as a redox mediator. Furthermore, the use of enzyme immobilisation technology to improve the operational stability and reusability of the putative laccase was also investigated. We found that immobilising the enzyme through the cross-linked enzyme aggregate method significantly improved its tolerance towards extreme pH as well as the presence of organic solvents. This work expands the arsenal of bacterial laccases available for the bioremediation of dye-containing wastewater.


Assuntos
Corantes/isolamento & purificação , Lacase/metabolismo , Compostos Orgânicos/isolamento & purificação , Rhodobacteraceae/enzimologia , Sequência de Aminoácidos , Cor , Cobre/metabolismo , Reagentes de Ligações Cruzadas/química , Ensaios Enzimáticos , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Lacase/química , Lacase/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Sais/química , Solventes/química , Temperatura
6.
Int J Biol Macromol ; 188: 983-992, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34403677

RESUMO

Plant laccases have been proposed to participate in lignin biosynthesis. However, there is no direct evidence that individual laccases in Populus can polymerize lignin monomers and alter cell wall structure. Here, a Populus laccase, PtrLAC16, was expressed and purified in a eukaryotic system. Enzymatic analysis of PtrLAC16 showed that it could polymerize lignin monomers in vitro. PtrLAC16 preferred sinapyl alcohol, and this preference is associated with an altered S/G ratio in transgenic Populus lines. PtrLAC16 was localized exclusively in the cell walls of stem vascular tissue, and a reduction in PtrLAC16 expression led to a significant decrease in lignin content and altered cell wall structure. There was a direct correlation between the inhibition of PtrLAC16 expression and structural changes in the stem cell wall of Populus. This study provides direct evidence that PtrLAC16 plays a key role in the polymerization of lignin monomers, especially for sinapyl lignin, and affects the formation of xylem cell walls in Populus.


Assuntos
Biocatálise , Parede Celular/enzimologia , Lacase/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Polimerização , Populus/enzimologia , Xilema/enzimologia , Regulação da Expressão Gênica de Plantas , Cinética , Lacase/isolamento & purificação , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Feixe Vascular de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Transporte Proteico , Análise Espectral Raman , Frações Subcelulares/metabolismo , Xilema/ultraestrutura
7.
Biomolecules ; 11(6)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199365

RESUMO

Psychrophilic laccases catalyzing the bond formation in mild, environmentally friendly conditions are one of the biocatalysts at the focus of green chemistry. Screening of 41 cold-adapted strains of yeast and yeast-like fungi revealed a new laccase-producing strain, which was identified as Kabatiella bupleuri G3 IBMiP according to the morphological characteristics and analysis of sequences of the D1/D2 regions of 26S rDNA domain and the ITS1-5,8S-ITS2 region. The extracellular activity of laccase in reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at the optimal pH 3.5 was 215 U/L after 15 days of growth in a medium with waste material and 126 U/L after 25 days of cultivation in a defined medium. Copper (II) ions (0.4 mM), Tween 80 (1.0 mM) and ascorbic acid (5.0 mM) increased the production of laccase. The optimum temperature for enzyme operation is in the range of 30-40 °C and retains over 60% of the maximum activity at 10 °C. New laccase shows high thermolability-half-life at 40 °C was only 60 min. Enzyme degradation of synthetic dyes was the highest for crystal violet, i.e., 48.6% after 1-h reaction with ABTS as a mediator. Outcomes of this study present the K. bupleuri laccase as a potential psychrozyme for environmental and industrial applications.


Assuntos
Ascomicetos/enzimologia , Corantes/química , Proteínas Fúngicas , Violeta Genciana/química , Lacase , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Temperatura Alta , Lacase/química , Lacase/isolamento & purificação
8.
Int J Mol Sci ; 22(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062799

RESUMO

In recent years, researchers have focused on developing simple and efficient methods based on electrochemical biosensors to determine hydroxycinnamic acids from various real samples (wine, beer, propolis, tea, and coffee). Enzymatic biosensors represent a promising, low-cost technology for the direct monitoring of these biologically important compounds, which implies a fast response and simple sample processing procedures. The present review aims at highlighting the structural features of this class of compounds and the importance of hydroxycinnamic acids for the human body, as well as presenting a series of enzymatic biosensors commonly used to quantify these phenolic compounds. Enzyme immobilization techniques on support electrodes are very important for their stability and for obtaining adequate results. The following sections of this review will briefly describe some of the laccase (Lac) and tyrosinase (Tyr) biosensors used for determining the main hydroxycinnamic acids of interest in the food or cosmetics industry. Considering relevant studies in the field, the fact has been noticed that there is a greater number of studies on laccase-based biosensors as compared to those based on tyrosinase for the detection of hydroxycinnamic acids. Significant progress has been made in relation to using the synergy of nanomaterials and nanocomposites for more stable and efficient enzyme immobilization. These nanomaterials are mainly carbon- and/or polymer-based nanostructures and metallic nanoparticles which provide a suitable environment for maintaining the biocatalytic activity of the enzyme and for increasing the rate of electron transport.


Assuntos
Técnicas Biossensoriais , Ácidos Cumáricos/isolamento & purificação , Lacase/isolamento & purificação , Monofenol Mono-Oxigenase/isolamento & purificação , Carbono/química , Ácidos Cumáricos/química , Técnicas Eletroquímicas , Enzimas Imobilizadas/química , Humanos , Lacase/química , Nanopartículas Metálicas/química , Monofenol Mono-Oxigenase/química
9.
Prep Biochem Biotechnol ; 51(9): 901-918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33586595

RESUMO

Production of an extracellular thermophilic and alkali stable laccase from Phoma herbarum isolate KU4 was reported for the first time, both in submerged fermentation (SmF, highest 1590 U/mL) and solid state fermentation (SSF, highest 2014.21 U/mL) using agro-industrial residues. The laccase was partially purified to 7.93 fold with the apparent molecular weight of 298 kDa. The enzyme had pH optimum at 5.0 and temperature optimum at 50 °C, with maximum stability at pH 8.0. It showed activity towards various phenolic and non-phenolic compounds. The kinetic parameters, Km, Vmax and Kcat of the laccase for DMP were 0.216 mM, 270.27 U/mg and 506.69 s-1, respectively. Laccase activity was inhibited by various metal ions and conventional inhibitors, however, it was slightly increased by Zn2+. The laccase showed good decolorization efficiency towards four industrial dyes, namely, methyl violet (75.66%), methyl green (65%), indigo carmine (58%) and neutral red (42%) within 24 h. FTIR analysis of the decolorized products confirmed the degradation of the dyes. The decolorization efficiency of the enzyme suggests that the partially purified laccase could be used to decolorize synthetic dyes present in industrial effluents and for waste water treatments. The thermophilic and alkali stable laccase may also have wider potential industrial applications.


Assuntos
Corantes/química , Proteínas Fúngicas , Temperatura Alta , Lacase , Phoma/enzimologia , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Concentração de Íons de Hidrogênio , Lacase/química , Lacase/isolamento & purificação
10.
Int J Biol Macromol ; 176: 394-403, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548319

RESUMO

This study reports an efficient and fast procedure for the purification of laccase (PaL) obtained from the resin of Pistacia atlantica Desf. It was purified by one-step affinity chromatography and showed the specific activity of 393 U/mg with 81.9-fold purification. The molecular weight of PaL was estimated to be approximately 60 kDa using gel electrophoresis SDS-PAGE. Moreover, it depicted diphenolase activity and high affinity towards 2,6-dimethoxy phenol (Km = 10.01 ± 0.5 mM) and syringaldazine (Km = 6.57 ± 0.2 mM) comparing with plant-origin polyphenol oxidases reported in the literature. It should be noted that PaL possessed optimal activity at pH 7.5 and 45 °C. It also remained stable under different conditions of pH (6.5-8.0), temperature (25-45 °C), and when it was exposed to several metal ions. The MTT and flow cytometry assays demonstrated that the enzyme treatment significantly affected growth of HeLa, HepG2, and MDA-MB-231 cells with LC50 values of 4.83 ± 0.02, 61 ± 0.31, and 26.83 ± 0.11 µM after 72 h, respectively. NOVELTY STATEMENT: This is the first attempt to isolate and characterize a new oxidoreductase from the resin of Pistacia atlantica Desf., native species of Iran, to recruit it in cytotoxicity researches. In the purification process by an efficient affinity column (SBA-NH2-GA), the enzyme was eluted promptly with a satisfied yield. The purified laccase exerted higher affinity to diphenolic compounds and pH-thermal stability compared to other plant-derived polyphenol oxidases. The purified enzyme was found to show anti-oxidant capacity and significantly inhibited the growth of cancerous cells in vitro. PaL showed more cytotoxic activity towards HeLa and MDA-MB-231 cells by induction of apoptosis. The cytotoxic activity of the laccase was measured by flow cytometry.


Assuntos
Citotoxinas , Lacase , Pistacia/química , Proteínas de Plantas , Resinas Vegetais/química , Catálise , Citotoxinas/química , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Células HeLa , Células Hep G2 , Humanos , Lacase/química , Lacase/isolamento & purificação , Lacase/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia
11.
Int J Biol Macromol ; 172: 270-280, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418049

RESUMO

Enzyme immobilization can increase enzyme reusability to reduce cost of industrial production. Ginkgo biloba leaf extract is commonly used for medical purposes, but it contains ginkgolic acid, which has negative effects on human health. Here, we report a novel approach to solve the problem by degrading the ginkgolic acid with immobilized-laccase, where core/shell composite nanoparticles prepared by coaxial electrospraying might be first applied to enzyme immobilization. The core/shell Fe3O4/nylon 6,6 composite nanoparticles (FNCNs) were prepared using one-step coaxial electrospraying and can be simply recovered by magnetic force. The glutaraldehyde-treated FNCNs (FNGCNs) were used to immobilize laccase. As a result, thermal stability of the free laccase was significantly improved in the range of 60-90 °C after immobilization. The laccase-immobilized FNGCNs (L-FNGCNs) were applied to degrade the ginkgolic acids, and the rate constants (k) and times (τ50) were ~0.02 min-1 and lower than 39 min, respectively, showing good catalytic performance. Furthermore, the L-FNGCNs exhibited a relative activity higher than 0.5 after being stored for 21 days or reused for 5 cycles, showing good storage stability and reusability. Therefore, the FNGCNs carrier was a promising enzyme immobilization system and its further development and applications were of interest.


Assuntos
Óxido Ferroso-Férrico/química , Proteínas Fúngicas/química , Ginkgo biloba/química , Lacase/química , Nanopartículas de Magnetita/química , Salicilatos/química , Reagentes de Ligações Cruzadas/química , Técnicas Eletroquímicas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/isolamento & purificação , Reutilização de Equipamento , Proteínas Fúngicas/isolamento & purificação , Glutaral/química , Hidrólise , Cinética , Lacase/isolamento & purificação , Nanopartículas de Magnetita/ultraestrutura , Nylons/química , Extratos Vegetais/química , Folhas de Planta/química , Polyporaceae/química , Polyporaceae/enzimologia
12.
Int J Biol Macromol ; 173: 99-108, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460660

RESUMO

The present investigation reports an in-vitro study using combination of laccase and an enhancer capable of inhibiting the growth of pathogenic microorganisms, preventing biofilm formation, and whitening teeth. Laccase-cinnamic acid system remarkably inhibited the growth of Aggregatibacter actinomycetemcomitans, Candida albicans, S. aureus, and Streptococcus mutans whilst showed no significant effects on Gram-negative bacteria. Data presented that cinnamic acid (10 mM) with laccase (0.125 U ml-1) led to a maximum decrease of about 90%, in S. mutans biofilm formation. The confocal laser scanning microscopy showed considerable detachment of S. mutans cells from glass substratum. The combined laccase-cinnamic acid system could remove teeth discoloration caused by coffee. SEM of the teeth surface exhibited no damages such as surface cracking or fracture. Liquid chromatography-tandem mass spectrometry (LC-MS) and cyclic voltammetry (CV) studies showed that laccase can catalyze the one-electron oxidation of cinnamic acid to the respective radical. This radical can then undergo several fates, including recombination with another radical to form a dimeric species, dismutation of the radical back to cinnamic acid or decarboxylation to give various reduced oxygen species. Therefore, the redox potential values of phenolic monomers/oligomers are related with their biological activities.


Assuntos
Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Antibacterianos/farmacologia , Cinamatos/farmacologia , Proteínas Fúngicas/farmacologia , Hericium/química , Lacase/farmacologia , Aggregatibacter actinomycetemcomitans/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Ácidos Cafeicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Catecóis/farmacologia , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas Fúngicas/isolamento & purificação , Ácido Gálico/farmacologia , Hericium/enzimologia , Hidroquinonas/farmacologia , Lacase/isolamento & purificação , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Oxirredução , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Clareadores Dentários/farmacologia
13.
Biotechnol Appl Biochem ; 68(2): 297-306, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32282952

RESUMO

A homogeneous monomeric laccase (ASL) from Agaricus sinodeliciosus, with a molecular mass of 65 kDa, was isolated using ion-exchange chromatography (CM-cellulose and Q-Sepharose) and gel-filtration chromatography (Superdex 75). This laccase exhibited maximum activity at 50 °C and pH 5.0. Hg2+ and Cd2+ significantly inhibited its activity. The laccase displayed a Km value of 0.9 mM toward 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS). In addition to ABTS, ASL exhibited higher affinity toward o-toluidine and benzidine than other substrates. ASL is able to decolorize malachite green and Eriochrome black T.


Assuntos
Agaricus/enzimologia , Proteínas Fúngicas , Lacase , Cádmio/química , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Temperatura Alta , Concentração de Íons de Hidrogênio , Lacase/química , Lacase/isolamento & purificação , Mercúrio/química
14.
Cell Biol Int ; 45(3): 536-548, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32052524

RESUMO

Laccases are enzymes belonging to the family of blue copper oxidases. Due to their broad substrate specificity, they are widely used in many industrial processes and environmental bioremediations for removal of a large number of pollutants. During last decades, laccases attracted scientific interest also as highly promising enzymes to be used in bioanalytics. The aim of this study is to obtain a highly purified laccase from an efficient fungal producer and to demonstrate the applicability of this enzyme for analytics and bioremediation. To select the best microbial source of laccase, a screening of fungal strains was carried out and the fungus Monilinia fructicola was chosen as a producer of an extracellular enzyme. Optimal cultivation conditions for the highest yield of laccase were established; the enzyme was purified by a column chromatography and partially characterized. Molecular mass of the laccase subunit was determined to be near 35 kDa; the optimal pH ranges for the highest activity and stability are 4.5-5.0 and 3.0-5.0, respectively; the optimal temperature for laccase activity is 30°C. Laccase preparation was successfully used as a biocatalyst in the amperometric biosensor for bisphenol A assay and in the bioreactor for bioremediation of some xenobiotics.


Assuntos
Ascomicetos/enzimologia , Espaço Extracelular/enzimologia , Lacase/isolamento & purificação , Lacase/metabolismo , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Compostos Benzidrílicos/metabolismo , Benzotiazóis/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Reatores Biológicos/microbiologia , Calibragem , Carbono/farmacologia , Diclofenaco/metabolismo , Eletroquímica , Eletrodos , Cinética , Nitrogênio/farmacologia , Fenóis/metabolismo , Sais/farmacologia , Ácidos Sulfônicos/metabolismo , Xenobióticos/metabolismo
15.
Mol Biotechnol ; 63(1): 24-39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058020

RESUMO

Laccases are polyphenol oxidoreductases used in a number of industrial applications. Due to the increasing demand for these "green catalysis" enzymes, the identification and biochemical characterisation of their novel properties is essential. In our study, cloned Madurella mycetomatis laccase (mmlac) genes were heterologously expressed in the methylotrophic yeast host Pichia pastoris. The high yield of the active recombinant protein in P. pastoris demonstrates the efficiency of a reliably constructed plasmid to express the laccase gene. The optimal biochemical conditions for the successfully expressed MmLac enzyme were identified. Detailed structural properties of the recombinant laccase were determined, and its utility in decolourisation and textile bleaching applications was examined. MmLac demonstrates good activity in an acidic pH range (4.0-6.0); is stable in the presence of cationic metals, organic solvents and under high temperatures (50-60 °C); and is stable for long-term storage at - 20 °C and - 80 °C for up to eight weeks. The structural analysis revealed that the catalytic residues are partially similar to other laccases. MmLac resulted in an increase in whiteness, whilst demonstrating high efficiency and stability and requiring the input of fewer chemicals. The performance of this enzyme makes it worthy of investigation for use in textile biotechnology applications, as well as within environmental and food technologies.


Assuntos
Biotecnologia/métodos , Lacase/química , Lacase/genética , Madurella/genética , Saccharomycetales/metabolismo , Clareadores/química , Catálise , Clonagem Molecular , Estabilidade Enzimática , Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Lacase/isolamento & purificação , Madurella/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
16.
Prep Biochem Biotechnol ; 51(7): 659-668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33269956

RESUMO

Laccases are a group of oxidases that catalyze the oxidation of a wide range of electron rich substrates like phenolic compounds, lignin and aromatic amines. They are of interest because of their potential to be used in environmental and industrial applications. In this research, potent laccase producer fungi were screened and isolated from olive mill wastewater (OMW). One of the 23 isolated fungi was identified as Galactomyces geotrichum based on 18S rDNA sequence analysis that detected good laccase activity. Produced laccase had a molecular weight of 55 kDa that was confirmed by zymogram analysis. This is the first report about the optimization of laccase Production by G. geotrichum under solid-state fermentation. The optimization was made by the Taguchi design of experiments (DOE) methodology. An orthogonal array (L25) was designed using Minitab 19 software to study four effective process factors in five levels for laccase production. The optimum condition derived was; moisture content (80%), fermentation time (14 day), CuSO4⋅5H2O as the inducer (300 µM), glucose as a co-substrate (5 g/L). Maximum laccase activity of 52.86 (U/g of dry substrate) was obtained using optimum fermentation condition. This study aimed to better understand the laccase producing microorganisms in OMW and take them to OMW treatment that is rich in phenolic compounds.


Assuntos
Proteínas Fúngicas , Geotrichum/crescimento & desenvolvimento , Lacase , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Lacase/biossíntese , Lacase/química , Lacase/isolamento & purificação
17.
Int J Biol Macromol ; 167: 369-381, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33275974

RESUMO

Laccases or benzenediol oxygen oxidoreductases (EC 1.10.3.2) are polyphenol multicopper oxidases that are known for their structural and functional diversity in various life forms. In the present study, the molecular and physico-chemical properties (redox-potential and secondary structures) of fungal laccase isozymes (FLIs) isolated from a medicinal mushroom Ganoderma lucidum were analyzed and compared with those of the recombinant bacterial laccases (rLac) obtained from different Yersinia enterocolitica strains. It was revealed that the FLIs contained His-Cys-His as the most conserved residue in its domain I Cu site, while the fourth and fifth residues were variable (Ile, Leu, or Phe). Evidently, the cyclic voltammetric measurements of Glac L2 at Type 1 Cu site revealed greater E° for ABTS/ABTS+ (0.312 V) and ABTS+/ABTS2+ (0.773 V) compared to the E° of rLac. Furthermore, circular dichroism-based conformational analysis revealed structural stability of the FLIs at acidic pH (3.0) and low temperature (<30 °C), while the isozymes were destabilized at neutral pH (7.0) and high-temperature conditions (>70 °C). The zymographic studies further confirmed the functional inactivation of FLIs at high temperatures (≥70 °C), predominantly due to domain unfolding. These findings provide novel insight into the evolution of the catalytic efficiency and redox properties of the FLIs, contributing to the existing knowledge regarding stress responses, metabolite production, and the biotechnological utilization of metabolites.


Assuntos
Agaricales/enzimologia , Lacase/química , Oxirredução , Reishi/enzimologia , Yersinia enterocolitica/enzimologia , Agaricales/classificação , Agaricales/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Perfilação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas , Lacase/genética , Lacase/isolamento & purificação , Ligantes , Modelos Moleculares , Filogenia , Conformação Proteica , Reishi/classificação , Reishi/genética , Análise Espectral , Relação Estrutura-Atividade , Transcriptoma
18.
Int J Biol Macromol ; 170: 232-238, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340630

RESUMO

Laccases are multicoopper oxidases catalyzing the oxidation of phenolic as well as non-phenolic compounds. Laccases show typical blue color due to the presence of covalent Type 1 Cu-Cys bond which absorbs at 600 nm. However, recently some white laccases have also been identified which lacks typical spectra of blue laccases and do not show peak at 600 nm. In the present study, a novel white laccase was isolated from Bacillus sp. MSK-01. MSK laccase was purified and characterized in detail and the purified laccase was referred to MSKLAC. It has a molecular weight of 32 KDa. UV-visible spectrum of purified MSKLAC do not show characteristic peak at 600 nm and bend at 330 nm. The enzyme was repressed by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and ß-mercaptoethanol. The laccase was highly thermo-stable enzyme having optimum temperature of 75 °C and could treasure more than 50% activity even at 100 °C. The optimum pH for ABTS and guaiacol was 4.5 and 8.0 respectively. MSKLAC was stable in the presence of most of the metal ions and surfactants. The effect of MSKLAC on lung cancer cell line was also assessed. It was observed that MSKLAC is inhibitory to lung cell cancer line. Thus, MSKLAC has potential to be used as an anti-proliferative agent to cancer cells.


Assuntos
Bacillus/enzimologia , Lacase/química , Lacase/isolamento & purificação , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Bacillus/metabolismo , Cor , Corantes/metabolismo , Concentração de Íons de Hidrogênio , Lacase/metabolismo , Oxirredução , Especificidade por Substrato , Temperatura
19.
Int J Biol Macromol ; 167: 1393-1405, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33202275

RESUMO

A new laccase gene from newly isolated Bacillus licheniformis TCCC 111219 was actively expressed in Escherichia coli. This recombinant laccase (rLAC) exhibited a high stability towards a wide pH range and high temperatures. 170% of the initial activity was detected at pH 10.0 after 10-d incubation, and 60% of the initial activity was even kept after 2-h incubation at 70 °C. It indicated that only single type of extreme environment, such as strong alkaline environment (300 K, pH 12) or high temperature (370 K, pH 7), did not show obvious impact on the structural stability of rLAC during molecular dynamics simulation process. But the four loop regions of rLAC where the active site is situated were seriously destroyed when strong alkaline and high temperature environment existed simultaneously (370 K, pH 12) because of the damage of hydrogen bonds and salt bridges. Moreover, this thermo- and alkaline-stable enzyme could efficiently decolorize the structurally differing azo, triphenylmethane, and anthraquinone dyes with appropriate mediator at pH 3.0, 7.0, and 9.0 at 60 °C. These rare characteristics suggested its high potential in industrial applications to decolorize textile dyeing effluent.


Assuntos
Bacillus licheniformis/genética , Corantes/química , Escherichia coli/metabolismo , Lacase/química , Bacillus licheniformis/enzimologia , Clonagem Molecular , Inibidores Enzimáticos/química , Expressão Gênica , Temperatura Alta , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Íons/química , Lacase/antagonistas & inibidores , Lacase/isolamento & purificação , Metais/química , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Proteínas Recombinantes , Especificidade por Substrato
20.
Int J Biol Macromol ; 170: 298-306, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347931

RESUMO

Laccases are enzymes able to catalyze the oxidation of a wide array of phenolic and non-phenolic compounds using oxygen as co-substrate and releasing water as by-product. They are well known to have wide substrate specificity and in recent years, have gained great biotechnological importance. To date, most well studied laccases are from fungal and mesophilic origin, however, enzymes from extremophiles possess an even greater potential to withstand the extreme conditions present in many industrial processes. This research work presents the heterologous production and characterization of a novel laccase from a thermoalkaliphilic bacterium isolated from a hot spring in a geothermal site. This recombinant enzyme exhibits remarkably high specific activity (>450,000 U/mg) at 70 °C, pH 6.0, using syringaldazine substrate, it is active in a wide range of temperature (20-90 °C) and maintains over 60% of its activity after 2 h at 60 °C. Furthermore, this novel spore-coat laccase is able to biodecolorize eight structurally different recalcitrant synthetic dyes (Congo red, methyl orange, methyl red, Coomassie brilliant blue R250, bromophenol blue, malachite green, crystal violet and Remazol brilliant blue R), in just 30 min at 40 °C in the presence of the natural redox mediator acetosyringone.


Assuntos
Corantes/química , Lacase/química , Lacase/isolamento & purificação , Antraquinonas/química , Compostos Azo/química , Bacillus/enzimologia , Bacillus/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Lacase/metabolismo , Oxirredução , Esporos/metabolismo , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...